Suchen

Opale und Licht

Künstliche Edelsteine für die Telekommunikation

| Autor/ Redakteur: Janine Hillmer / Frauke Finus

Wer lässt sich nicht beeindrucken vom schillernden Farbenspiel von Opalen und anderen Edelsteinen? Inspiriert von der Interaktion der Opale mit Licht forscht Dr. Alexander Kühne an der Herstellung künstlicher Edelsteine für einen zukünftigen Einsatz im Bereich der Telekommunikation, der Photonik und der Biomedizin.

Firmen zum Thema

Künstliche Opale und eine elektronenmikroskopische Aufnahme der Partikelstruktur.
Künstliche Opale und eine elektronenmikroskopische Aufnahme der Partikelstruktur.
(Bild: A. Kühne / DWI)

Opale – natürlich vorkommende ebenso wie künstliche – bestehen aus winzigen Partikeln, die Lichtwellen verändern. Beispielsweise reflektieren sie bestimmte Lichtwellen und lassen andere Lichtwellen passieren. In seiner vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Arbeitsgruppe stellt Alexander Kühne am DWI – Leibniz-Institut für Interaktive Materialien in Aachen derartige Partikel in einem komplexen chemischen Verfahren her. Im nächsten Schritt nutzen die Wissenschaftler ein Spinnverfahren, um die Partikel im Inneren einer lichtleitenden Faser zu positionieren. Alternativ können sie die Partikel per Tintenstrahldruck gezielt auf einer Oberfläche platzieren.

Alle drei natürlichen Möglichkeiten Farbe zu erzeugen in einem System

Bei beiden Techniken fügen sich die Partikel zu geordneten Opalstrukturen zusammen. „Durch das Zusammenspiel von Struktur, Farbigkeit und Fluoreszenz können die Partikel in dem Opal auf ganz unterschiedliche Weise mit Licht in Wechselwirkung treten“, erklärt Kühne. Der 33-Jährige kombiniert damit in einem einzigen System alle drei in der Natur vorkommenden Möglichkeiten, Farbe zu erzeugen: Die Absorption, wie bei normalen Farbstoffen, die Emission, wie beim Fluoreszenzeffekt und die Reflektion, welche durch die besondere Opalstruktur der Partikel erzeugt wird. „Verwendung finden sollen unsere Materialien als Manipulatoren in lichtleitenden Datenkabeln, wo sie für schnellere, effizientere Kommunikationswege sorgen sollen. Denkbar ist auch die Verarbeitung in spezielle Sicherheitskennzeichnungen, zum Beispiel für Medikamentenpackungen.“

Bildergalerie

Herausforderung der Herstellung vieler Partikel mit gleicher Größe

Die aktuellen Herausforderungen für Kühnes Team sind allerdings noch einige Schritte von der Anwendung entfernt. „Momentan arbeiten wir daran, eine Vielzahl von Partikeln mit exakt gleicher Größe herzustellen und verschiedene Fluoreszenzfarben in einem System zu kombinieren.“

Kühne studierte Chemie in Köln und Glasgow und promovierte bei Richard Pethrick an der University of Strathclyde in Glasgow. Nach Postdoc-Aufenthalten bei Klaus Meerholz in Köln und David Weitz in Harvard ist er seit Dezember 2011 wissenschaftlicher Mitarbeiter am DWI. Mit den Arbeiten seiner BMBF-geförderten Nachwuchsgruppe baut er auf seine Erfahrungen mit nanostrukturierten Polymerfilmen für organische Laser auf. Die Fördersumme für das Projekt beträgt gut eine Million Euro und beläuft sich auf einen Zeitraum von vier Jahren.

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Kontaktieren Sie uns über: support.vogel.de (ID: 43247367)