Google+ Facebook Twitter XING LinkedIn GoogleCurrents YouTube

Chemische Reaktionen

Schnelle Röntgenkamera filmt Chemie in Echtzeit

| Autor / Redakteur: Karl-Heinz Karisch / Frauke Finus

Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion.
Aufnahme des Bruchs und der Bildung von chemischen Bindungen während einer perizyklischen Reaktion. (Bild: MBI)

Firma zum Thema

In chemischen Reaktionen lagern sich Atome in und zwischen Molekülen um, während Bindungen aus Valenzelektronen gebildet und gebrochen werden. Wissenschaftler des Berliner Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnten jetzt zeigen, dass eine ultraschnelle Röntgenkamera nicht nur sensitiv gegenüber chemisch inerten Rumpfelektronen ist, sondern auch die Bewegung von chemisch aktiven Valenzelektronen visualisieren kann.

Die Bewegung von Valenzelektronen ist zentraler Bestandteil von jeder chemischen Reaktion. Dabei muss beachtet werden, dass lediglich ein Bruchteil dieser Valenzelektronen - oft nur ein kleiner Teil der Ladung eines Elektrons – aktiv an chemischen Reaktionen teilnimmt. Und dies geschieht äußerst schnell: Die Dauer von vielen wichtigen chemischen Prozessen wie die ersten Schritte des Sehvorgangs und der Lichtsammlung in biologischen Systemen, beträgt lediglich wenige Femtosekunden (1 Femtosekunde = 10-15 Sekunden).

Ultrakurze Röntgenblitze

Die Aufnahme dieser chemisch aktiven Valenzelektronen ist daher äußerst anspruchsvoll. Erstens benötigt man eine Kamera mit exzellenter Zeit- und Ortsauflösung. Zweitens wird eine sehr empfindliche Kamera benötigt, denn man ist nicht nur daran interessiert wie sich die Atome bewegen, sondern auch daran wie chemische Bindungen gebrochen und neue Bindungen gebildet werden, und das bedeutet den Bruchteil an aktiven Valenzelektronen aufzunehmen, welche sich im Meer aller Elektronen bewegen, die an die Atome in Molekülen gebunden sind. Eine Röntgenkamera genügt leicht der ersten Voraussetzung. Die Streuung von Röntgenstrahlung durch Materie ist seit Entdeckung von Röntgenstrahlung ein unverzichtbares Hilfsmittel der Strukturauflösung mit atomarer Ortsauflösung. Durch enormen technologischen Fortschritt können nun auch ultrakurze Röntgenblitze generiert werden, welche vorausgehende Untersuchungen um Zeitauflösung im Femtosekundenbereich erweitern können. Diese Röntgenblitze versprechen stroboskopische Schnappschüsse von chemischen und biologischen Prozessen in individuellen Molekülen zu generieren. Das Erfüllen der zweiten Voraussetzung, Sensibilität gegenüber aktiven Valenzelektronen, gehört allerdings nicht zu den Stärken einer Röntgenkamera. Die Streuung von Röntgenstrahlung durch Moleküle wird immer durch Rumpfelektronen und inerte Valenzelektronen dominiert. Daher wird generell angenommen, dass der kleine Teil von Valenzelektronen, welcher aktiv an chemischen Reaktionen beteiligt ist, im Gesamtstreusignal untergeht und damit die Aufnahme der ultraschnellen Umlagerung von aktiven Valenzelektronen mittels einer Röntgenkamera nicht möglich ist. Die in Nature Communications veröffentlichte Arbeit schlägt einen Weg vor diese Herausforderung zu lösen. Die Forscher demonstrieren theoretisch eine robuste und effektive Methode, die es ermöglicht Informationen über chemisch aktive Valenzelektronen aus den Röntgenstreubildern eines einzelnen Moleküls zu extrahieren, ein entscheidender Schritt bei dem Bestreben die Bildung und den Bruch von chemischen Bindungen in Echtzeit mit atomarer Ortsauflösung aufzunehmen. Die Arbeit zeigt wie die Bewegung von chemisch aktiven Valenzelektronen durch eine Kombination der routinemäßigen Analyse von Röntgenstreubildern mit der zusätzlichen Analyse jenes Bereichs der Streubilder, der auf einen relativ kleinen Impulstransfer beschränkt ist, sichtbar gemacht werden kann.

Energiebarriere überqueren

Die Arbeit zeigt nicht nur wie chemisch aktive Valenzelektronen mit Röntgenstrahlung aufgenommen werden können, sondern sie liefert auch experimentellen Zugang zu dem viel diskutierten Problem von synchroner gegen asynchrone Bindungsbildung und Bindungsbruch in chemischen Reaktionen. Die ultraschnelle Röntgenkamera bestätigt, dass die Antwort davon abhängt, ob die Atome genügend Energie haben, um die Energiebarriere, die Reaktanden von Produkten trennt, zu überqueren, oder ob die Atome auf das Quantenphänomen des Tunnels durch die Energiebarriere zurückgreifen müssen. Im ersten Fall bestätigen die Forscher eine Verzögerungszeit zwischen dem Bruch von alten und der Bildung von neuen Bindungen. Im zweiten Fall beobachten sie keine Verzögerung: Der Bruch der alten und die Bildung der neuen Bindungen ist synchron. Die Forscher hoffen, dass ihre Arbeit neue Einblicke in die Initialisierung und Kontrolle von Reaktionen bringt.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 43226370 / Forschung)

Industrial Usability 2019

Das Anwendererlebnis im Mittelpunkt

Wie sieht eine erfolgreiche UX-Strategie aus? Ein Glück in Sachen Alleinstellungsmerkmal: Eine für alle, die gibt es nicht. Dieses Dossier bietet verschiedene aktuelle Ansätze und Trends in der Industrial Usability. lesen

Effizienzsteigerung

Mit Künstlicher Intelligenz erfolgreich durchstarten

Wie Sie Ihr erstes KI-Projekt starten, wie sich die Branche verändern wird und welche Best Practices es heute schon gibt – hier finden Sie die Fakten und das nötige Grundlagenwissen! lesen