Fräsen Simulation des Wärmeeintrags verbessert Toleranztreue bei der Trockenbearbeitung
Die Trockenbearbeitung hat sich als eine Strategie in der Zerspanung etabliert, die deutliche Kostenvorteile im Vergleich zur Nassbearbeitung bietet und zudem verträglicher für Mensch und Umwelt ist. Durch den Wegfall der Schmier- und Kühlfunktion von Kühlschmierstoffen müssen allerdings die Prozessparameter sowie die Gestaltung der Werkzeuge und Maschinen angepasst werden.
Anbieter zum Thema
Durch den Wegfall des Kühlschmierstoffs bei der Trockenbearbeitung fehlt die Temperierung der Werkstücke bei der Zerspanung, wodurch sich deren thermische Belastung während des Bearbeitungsprozesses erhöht. Der daraus resultierende Werkstückverzug kann die Einhaltung enger Fertigungstoleranzen unmöglich machen.
Forscher untersuchen Verzug bei der Trockenbearbeitung
Deshalb werden am Institut für Produktionstechnik (WBK) der Universität Karlsruhe unterschiedliche Fertigungsschritte an Bauteilen unter dem Aspekt der Verzugsbeherrschung vorab simuliert und bewertet. Ziel der Forschungsarbeit ist eine auf Experimenten basierende mathematische Funktion, die die in das Bauteil eingebrachte Wärmestromdichte beschreibt und als Eingangsgröße für Simulationsprogramme dient.
Die experimentelle Erfassung der induzierten Wärmemenge für das Fräsen mit unterschiedlichen Prozessparametern oder Werkzeuggeometrien erfolgt durch den Einsatz von Thermoelementen, die in einen quaderförmigen Probenkörper eingeführt werden, der vorab mit drei Bohrungen unterschiedlicher Tiefe versehen wurde (Bild 1). Infolge des Zerspanungsprozesses erhöht sich die Temperatur der Probe.
Thermoelemente in unterschiedlicher Entfernung vom Fräser messen Temperaturverläufe
Die drei Thermoelemente, die sich in unterschiedlicher Entfernung zur Wirkstelle des Fräsers befinden, detektieren drei unterschiedliche Temperaturverläufe. Nach einer bestimmten Zeit bildet sich im Werkstück wieder eine homogene Temperaturverteilung aus. Dies kann über die drei Thermoelemente detektiert werden.
Anhand der gemessenen Verläufe bestimmt im Anschluss eine eigens entwickelte Auswertesoftware die Differenz dT [K] zwischen Ausgangs- und Homogenisierungstemperatur. Die Berechnung der induzierten Wärmemenge dQ [J] erfolgt dann über die Wärmebilanz: dQ = c · m · dT.
Experimentelle Daten dienen als Grundlage für Fräs-Simulation
Dabei ist m [kg] die Masse der Probe nach der Bearbeitung und c [J/(kg·K)] die spezifische Wärmekapazität des Werkstück-Werkstoffes. Sollen die experimentell gewonnenen Daten als Eingangsgröße für Simulationen verwendet werden, ergibt sich die Forderung nach einer geometrie- und zeitunabhängigen Größe.
Zu diesem Zweck erfolgt eine Division der eingebrachten Wärmemenge dQ durch die bearbeitete Probenoberfläche A. Das Resultat ist die induzierte Wärmestromdichte q [mJ/mm2], welche direkt als Parameter in Simulationsprogramme eingegeben werden kann.
(ID:289790)