Suchen

Hannover Messe 2020 KI überwacht Kugelgewindetriebe in Werkzeugmaschinen

| Redakteur: Stefanie Michel

Am Karlsruher Instituts für Technologie (KIT) wurde ein System zur vollautomatischen Überwachung von Kugelgewindetrieben in Werkzeugmaschinen entwickelt. Eine direkt in die Mutter des Kugelgewindetriebs integrierte Kamera erzeugt Bilddaten, über die eine Künstliche Intelligenz (KI) kontinuierlich den Verschleiß überwacht.

Firma zum Thema

Eine integrierte Kamera samt Beleuchtung ermöglicht die kontinuierliche Überwachung der Spindel im Kugelgewindetrieb.
Eine integrierte Kamera samt Beleuchtung ermöglicht die kontinuierliche Überwachung der Spindel im Kugelgewindetrieb.
(Bild: KIT)

Die Wartung und der rechtzeitige Tausch von defekten Bauteilen in Werkzeugmaschinen ist ein wichtiger Bestandteil des Produktionsprozesses beim Maschinenbau. Bei Kugelgewindetrieben, wie sie etwa in Drehmaschinen zur Präzisionsführung bei der Herstellung von zylindrischen Bauteilen zum Einsatz kommen, wird der Verschleiß bislang manuell festgestellt. „Die Wartung ist deshalb mit Montagearbeiten verbunden. Die Maschine steht dann erst einmal still“, sagt Professor Jürgen Fleischer vom Institut für Produktionstechnik (wbk) des KIT. „Unser Ansatz basiert dagegen auf der Integration eines intelligenten Kamerasystems direkt in den Kugelgewindetrieb. So kann ein Anwender den Zustand der Spindel kontinuierlich überwachen. Besteht Handlungsbedarf, wird er automatisch informiert.“

Direkt zum Datenblatt der Spindelüberwachung

Bildergalerie

Kamera überwacht gesamte Spindeloberfläche

Das neue System besteht aus einer an der Mutter des Kugelgewindetriebes angebrachten Kamera mit Beleuchtung, die mit einer Künstlichen Intelligenz zur Auswertung der Bilddaten kombiniert ist. Während der Bewegung der Mutter auf der Spindel macht sie von jedem Spindelabschnitt Einzelaufnahmen. Dadurch wird jeweils die gesamte Oberfläche der Spindel analysiert.

Die Kombination von Bilddaten aus dem laufenden Betrieb mit Methoden des Maschinellen Lernens ermöglicht Anwenderinnen und Anwendern des Systems eine direkte Bewertung des Zustands der Spindeloberfläche. „Wir haben unseren Algorithmus mit tausenden Aufnahmen trainiert, sodass er nun souverän zwischen Spindeln mit und solchen ohne Defekt unterscheiden kann“, so Tobias Schlagenhauf vom wbk, der an der Entwicklung des Systems mitgearbeitet hat. „Durch eine weitere Auswertung der Bilddaten lässt sich der Verschleiß außerdem genau quantifizieren und interpretieren. So können wir unterscheiden, ob es sich bei einer Verfärbung einfach nur um Schmutz oder aber um schädlichen Lochfraß handelt.“ Beim Training der KI wurden alle denkbaren Formen einer visuell sichtbaren Degeneration berücksichtigt und die Funktionalität des Algorithmus mit neuen, vom Modell noch nie gesehenen Bilddaten validiert. Der Algorithmus eignet sich für alle Anwendungsfälle, bei denen bildbasiert Defekte auf der Oberfläche einer Spindel identifiziert werden sollen und lässt sich auch auf andere Anwendungsfälle übertragen.

Das Karlsruher Institut für Technologie (KIT) auf der Hannover Messe 2020: Halle 25, Stand C14

(ID:46347255)