Google+ Facebook Twitter XING LinkedIn GoogleCurrents YouTube

Predictive Maintenance

Messdaten verhindern Ausfallverluste

| Redakteur: Victoria Sonnenberg

Philipp Wallner, Industrial Automation & Machinery Industry Manager bei MathWorks, erklärt, wie Ingenieure bei der Implementierung von Algorithmen zur vorrausschauenden Wartung unterstützt werden können.
Bildergalerie: 1 Bild
Philipp Wallner, Industrial Automation & Machinery Industry Manager bei MathWorks, erklärt, wie Ingenieure bei der Implementierung von Algorithmen zur vorrausschauenden Wartung unterstützt werden können. (Bild: MathWorks)

Die Predictive Maintenance Toolbox von MathWorks unterstützt Ingenieure bei der Implementierung von Algorithmen zur vorausschauenden Wartung.

Die vorausschauende Wartung ist, neben künstlicher Intelligenz, eine der Schlüsseltechnologien der Industrie 4.0. Daher sind laut einer PAC-Studie (Pierre Audoin Consultants) auch 83 % der europäischen Hersteller- und Transportunternehmen bereit, in Predictive Maintenance zu investieren. Doch es ist nicht ganz einfach, diese Technik effizient und produktiv einzusetzen. Die verantwortlichen Ingenieure müssen Kenntnisse in sehr verschiedenen Bereichen haben. Darüber hinaus ist es wichtig, die Implementierung durch geeignete Anwendungen und Tools zu beschleunigen und zu vereinfachen.

Philipp Wallner, Industrial Automation & Machinery Industry Manager bei MathWorks, erklärt, wie diese Herausforderungen gemeistert werden können.

Warum Predictive Maintenance?

Der zunehmende Einsatz von Sensortechnik und künstlicher Intelligenz in der Industrie erzeugt eine erhebliche Menge an Daten, die bei der richtigen Analyse wichtige Einsichten zum Zustand von Maschinen und Prozessen liefern kann. Denn Ausfallzeiten sind nicht nur mit hohen Kosten, sondern meist auch mit einem Vertrauensverlust seitens der Kunden verbunden. Ein Beispiel ist die Wartung von Flugzeugen, die regelmäßig durchgeführt werden muss. Jedes Mal, wenn es durch die unplanmäßige Reparatur an einer Flugturbine zu Verspätungen kommt, führt das zu Vertrauensverlusten bei den Flugreisenden sowie zusätzlichen Kosten.

Wie aus Künstlicher Intelligenz effiziente Intelligenz wird

Modellentwicklung

Wie aus Künstlicher Intelligenz effiziente Intelligenz wird

03.08.18 - Richard Rovner von MathWorks erklärt, warum Künstliche Intelligenz (KI) nur einer von vielen Erfolgsfaktoren bei der Entwicklung neuer Systeme und Anwendungen ist. Seine komplette Keynote kann man auf der MATLAB EXPO am 26. Juni 2018 in München hören. lesen

Ein weiterer Punkt: Maschinen können an schlecht erschlossenen Orten stehen, an denen eine durchgehende Internetverbindung nicht möglich ist. Deshalb ist es entscheidend, dass Ingenieure bereits im Vorfeld herausfinden können, ob etwas nicht stimmt, und so einen Ausfall verhindern können. Denn stellen sie erst vor Ort fest, dass beispielsweise Ersatzteile benötigt werden, drohen Ausfälle von mehreren Tagen, bis diese geliefert werden können. Daher ist das Wissen darum, welche Wartungsmaßnahmen als nächstes anstehen so wertvoll.

Wartung ist nicht gleich Wartung

Trotzdem wird in vielen Industriebereichen immer noch auf reaktive Wartung gesetzt. Doch ist die Störung oder der Fehler erst einmal eingetreten, kann es zu langen Ausfallzeiten kommen, bis das Problem analysiert und behoben ist. Ein solches Vorgehen bedeutet ein hohes Risikopotential für das Unternehmen. Um eben solche Produktionsausfälle zu vermeiden, werden engmaschige Instandhaltungspläne erstellt, im Zuge derer (Verschleiß-) Teile zeit- oder zustandsbasiert bereits vorbeugend ausgetauscht werden. Dies führt zu einer unnötigen Kostenbelastung, da Maschinen präventiv gewartet werden, die noch funktionstüchtig wären.

Im Gegensatz dazu richtet sich ein vorausschauender Wartungsplan nicht nach einem bestimmten Zeitplan. Er wird von Algorithmen bestimmt, die Daten von Sensoren sammeln und auswerten. Es sind also die Algorithmen, die den Erfolg von Predictive Maintenance ausmachen.

Von den Daten zur „Estimated RUL“

Sensoren können beispielsweise die Temperatur, den Druck, die Stromspannung, die Geräuschentwicklung oder Vibration in einer Maschine oder Anlage messen. Es kann wichtig sein, nicht nur Daten der Maschinen selbst, sondern ebenso Umgebungsdaten, wie etwa die Luftfeuchtigkeit, zu sammeln. Diese Daten werden von verschiedenen Statistik- und Signalverarbeitungsalgorithmen verarbeitet und genutzt, um den Status der Maschinen einzuschätzen.

Dabei werden mithilfe von Daten-Clustering und Klassifizierung sowie anderen auf Machine Learning basierenden Techniken zum Vergleich Marker für Störfälle herangezogen. In einem modellbasierten Ansatz können diese Daten auch genutzt werden, um prädiktive Modelle des Systemverhaltens für die Zustandsüberwachung zu erstellen. Das Modell kann dann verwendet werden, um Veränderungen im Zustand der Anlage zu verfolgen und deren Restnutzungsdauer oder „Remaining Useful Life“ (RUL) vorherzusagen. Die Wartung und der Austausch von Teilen finden erst dann statt, wenn es notwendig ist. Darüber hinaus kann auch der Produktionsprozess effizienter gestaltet werden, wenn alle Faktoren berücksichtigt werden.

Gut gerüstet, ist halb gewonnen

Für Predictive Maintenance bedarf es Fachwissens in Signalverarbeitung, maschinellem Lernen und ein Verständnis der Physik des zu wartenden Systems. Doch es ist sehr schwierig, Fachkräfte zu finden, die in allen drei Bereichen über ausreichend Wissen für den Aufbau prädiktiver Modelle verfügen. Daher ist es durchaus sinnvoll, sich von geeigneten Tools, die Ingenieure bei der Entwicklung von Predictive-Maintenance-Anwendungen helfen, Unterstützung zu holen.

Machine Learning in der Industrie

MM Dossier

Machine Learning in der Industrie

Machine Learning oder „Maschinelles Lernen“ ist in der Industrie angekommen. Lesen Sie in unserem MM Dossier, wie aus der Fähigkeit, aus Daten zu lernen und Muster abzuleiten, neue Anwendungen und Geschäftsmodelle entstehen. weiter...

MATLAB- und Simulink-Anwendungen bieten einen leichten und schnellen Einstieg und helfen Anwendern unter anderem dabei, Daten interaktiv zu erschließen, die wichtigsten Variablen für ein Modell zu bestimmen, gängige prädiktive Modelle parallel zu trainieren oder mehrere Modelle zu bewerten und zu vergleichen.

Intelligente Fertigung mit künstlicher Intelligenz

Künstliche Intelligenz

Intelligente Fertigung mit künstlicher Intelligenz

16.07.18 - Die künstliche Intelligenz (KI) wird heute in autonomen LKWs, Chatbots für den Kundendienst und in Drohnenzügen eingesetzt. Und auch in der Fertigungsindustrie lässt sich mit künstlicher Intelligenz die Produktivität steigern. lesen

Ein anschauliches Beispiel für die Unterstützung bei Predictive-Maintenance-Aufgaben ist die Erstellung eines Klassifikationsmodells, das in der Lage ist, eine bestimmte Anzahl von Datenproben in unterschiedliche Kategorien einzuteilen. Ein Design ohne geeignete Tools bedeutet, viel Code zu schreiben und durch wiederholte Tests zu ermitteln, welches Modell am besten funktioniert. Hier können Funktionen der Predictive Maintenance Toolbox die Arbeit wesentlich erleichtern und beschleunigen, etwa durch eine Unterstützung beim Labeln von Daten mithilfe der Ground Truth Labeler App oder durch automatische Code-Generierung. Zudem können Ingenieure auf bereits vortrainierte neuronale Netzwerke wie GoogLeNet oder AlexNet zugreifen. Das gibt Ingenieuren die Freiheit, sich ganz auf den Workflow der Algorithmenentwicklung zu konzentrieren, ohne zwischen Tools und Umgebungen wechseln zu müssen.

Die Top Technologietrends für 2018 in der Industrie - Teil 2

Technologietrends 2018

Die Top Technologietrends für 2018 in der Industrie - Teil 2

In den schnelllebigen Zeiten der Digitalisierung ist es häufig schwer, am Puls der Zeit zu bleiben. Lesen Sie jetzt, welche weiteren 7 Trends dieses Jahr im Fokus der Industrie stehen. weiter...

So können Ingenieure mit der Predictive Maintenance Toolbox ihre Anwendung für die vorausschauende Wartung einfacher entwickeln und implementieren. Sie können große Mengen von Daten aus unterschiedlichen Quellen zusammenführen, analysieren und visualisieren und fortgeschrittene Machine-Learning-Algorithmen implementieren. Und sie können durch eine intelligente Wartung die Lebenszeit ihrer Maschinen besser im Blick behalten und teure Ausfälle verhindern.

Kommentare werden geladen....

Kommentar zu diesem Artikel abgeben

Der Kommentar wird durch einen Redakteur geprüft und in Kürze freigeschaltet.

Anonym mitdiskutieren oder einloggen Anmelden

Avatar
Zur Wahrung unserer Interessen speichern wir zusätzlich zu den o.g. Informationen die IP-Adresse. Dies dient ausschließlich dem Zweck, dass Sie als Urheber des Kommentars identifiziert werden können. Rechtliche Grundlage ist die Wahrung berechtigter Interessen gem. Art 6 Abs 1 lit. f) DSGVO.
  1. Avatar
    Avatar
    Bearbeitet von am
    Bearbeitet von am
    1. Avatar
      Avatar
      Bearbeitet von am
      Bearbeitet von am

Kommentare werden geladen....

Kommentar melden

Melden Sie diesen Kommentar, wenn dieser nicht den Richtlinien entspricht.

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

Dieser Beitrag ist urheberrechtlich geschützt. Sie wollen ihn für Ihre Zwecke verwenden? Infos finden Sie unter www.mycontentfactory.de (ID: 45526150 / Machine-Learning)

Gut zu wissen

Zeitmanagement

Persönliche Ziele in nur einer Minute erreichen, die produktivste Phase des Tages nutzen und keine Zeit mehr in Meetings verschwenden – mit unseren Tipps werden Sie zum effektiven Zeitmanager. lesen

Gut zu wissen

Der Business-Knigge

Wohin kommt die Serviette? Wer sitzt wo im Dienstwagen? Und darf ich eigentlich Notizen auf eine fremde Visitenkarte machen? Wir haben die Antworten. lesen